ENERGY STORAGE

A DISTRIBUTED ENERGY RESOURCE

IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE

THE PROGRAM

ENERGY STORAGE SYSTEMS

RESEARCH PROGRAM

MANAGED THROUGH

SANDIA NATIONAL LABS.

APPROPRIATIONS / REQUEST

PROJECT MANAGEMENT:

PROJECTS COMPETED

COSTSHARED (ca. 50%)

FUNDED INCREMENTALLY

REGULAR FINANCIAL REPORTS

PROGRAM COMPONENTS:

SYSTEMS INTEGRATION (12)

SUBSYSTEM DEVELOPMENT (6)

STRATEGIC ANALYSIS (4)

ANNUAL PEER REVIEW:

- Open to Public
- International Panel of Reviewers
- Comments and Numerical Scores
- Published Proceedings

- Sep. 8 9, 1999, Arlington, VA
- Sep. 18 21, 2000, Orlando, FL
- Nov. 14 15, 2001, Crystal City, VA

INTERNATIONAL CONFERENCE:

Electrical Energy Storage Applications and Technologies

EESAT 2000: Sep. 18 – 21, 2000, Orlando, FL

EESAT 2002: Apr. 19 – 23, 2002, San Francisco, CA

CONTACTS & COLLABORATIONS A KEY TO SUCCESS:

TVA
VIRG. POWER
CEC
EPRI
ILZRO

IEA
BPA
AEP ARIZ. POWER
NYSERDA
PEAC
EVAA

THE CONCEPT

ENERGY STORAGE

MEDIATES BETWEEN

VARIABLE SOURCES

AND VARIABLE LOADS

PROGRAM GOAL:

DEVELOP A BROAD PORTFOLIO

OF STORAGE TECHNOLOGIES

FOR A WIDE SPECTRUM

OF APPLICATIONS

DEVELOP

SELF-CONTAINED SYSTEMS

WITH INTEGRATED

POWER ELECTRONICS

The Digital Economy

Restructured Energy Market

3 REGIMES OF STORAGE:

Power Quality (1cycle –15sec)

Load Following (mins.)

Energy Management (hours.)

POWER QUALITY:

DIGITAL EQUIPMENT WILL

TRIP ON VOLTAGE SAGS OR

SWELLS OF AS LITTLE AS

20% FOR A SINGLE CYCLE

PQ EVENTS ARE EXPENSIVE:

ESTIMATED YEARLY LOSSES

30 – 188 BILLION DOLLARS

EXAMPLE:

10 MW (LA BATTERY) SYSTEM

PROVIDES SEAMLESS POWER DURING OUTAGES

FOR A MICROCHIP PLANT

AFTER 15 SECONDS

A QUICK-START

GENSET TAKES OVER:

1-2 YEAR PAYBACK!!

10 MW - 15 sec System at Microchip Plant

SEAMLESS POWER CAN ONLY BE PROVIDED BY ENERGY STORAGE!

BUT FOR LONGER OUTAGES, DG PROVIDES NEEDED BACKUP

ENERGY STORAGE

AND DISTRIBUTED GENERATION

ARE COMPLEMENTARY!

LOAD FOLLOWING:

A) DISTRIBUTED GENERATION CANNOT RESPOND TO RAPID LOAD CHANGES

B) RENEWABLE GENERATION IS INTERMITTENT

EXAMPLE:

OILRIG AT DENVER AIRPORT POWERED BY

60kW MICRO-TURBINE TOGETHER WITH 100 kW ZnBr BATTERY

MICROTURBINE SATISFIES AVERAGE ENERGY DEMAND

PUMP NEEDS 150 kW TO DRAW OIL

AND - 80 kW FOR REGENERATIVE BREAKING

60 kW Micro-Turbine + 100 kW ZnBr Storage

EXAMPLE:

METLAKATLA, ALASKA

1MW / 1.4 MWhr (VRLA)

SUPPORTS

MINIGRID STABILITY

1 MW / 1.4 MWh Metlakatla Island

ENERGY MANAGEMENT:

A) LONG TERM STORAGE OF SIZABLE BLOCKS OF ENERGY TO BE DEPLOYED AT PERIODS OF **GENERATION SHORTAGE** OR TRANSMISSION CONGESTION

B) STORAGE OF BLOCKS OF RENEWABLE ENERGY TO MAKE IT DISPATCHABLE DURING PERIODS OF UNAVAILABILITY **OR HIGH PRICES**

EXAMPLE:

6 MW / 8hr

SODIUM SULFUR BATTERY

OHITO, JAPAN

6 MW / 8hrs Sodium-Sulfur

THE OPTIONS

A PORTFOLIO OF OPTIONS:

Standards: LA, VRLA, NiCd

Flow Batteries: ZnBr, Regenesys

Advanced Batteries: Li-Ion, NaS

Flywheels, Supercaps, SMES

EACH TECHNOLOGY

HAS UNIQUE ADVANTAGES

DIFFERENT RESEARCH GOALS

A PERFECT PROJECT

PQ 2000 POWER SYSTEM – FUNDING AND SALES

\$ 1.5 million in DOE funding

 \$ 3.5 million in leveraged co-funding by industry

 A commercially successful system:
 40 MW in play with a market value of \$ 15 million!

2 MW – 15sec Mobile Battery System